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Abstract

N

An N-parameter Gaussian stationary process X =1{X(¢): t €R"} isintroduced and the existence and pint continuity

of its local times is presented. And the moments of local times are estimated. Furthermore moduli of continuity and large increment results

for the local times are established.

Keywords:

1 Introduction and statement of the main
results

The parameter space is R]i =10 oo N,
throughout. A typical parameter ¢ € R]i is wrilten as
t= (t1,
partial order “ = on RA\/ . Namely, 5=t if and only
if s<<tiforall [=1, - N. When s =¢, we define

the closed interval

-+ ty) coordinatewise. There is a natural

N

(s8] = [](swta.

=1
Throughout, we will let .Zdenote the class of all N-
dimensional closed intervals 7 C (0, o)™ with the
form I=1[ s, t], where s =¢ and both are in (0,
). We always write A, for Lebesgue’ s measure
on R™, and use {°, °) and

scalar product and the Euclidean norm respectively.

°

to denote the ordinary

Definition 1. Let X ={X (1); 1 €R'} be a
real-valued N-parameter stochastic process. For any
Borel set A in the line R and T CRY, let the
occupation time

HA, T)= A{s;5s €ET- X(s) € 4). (1
If, for any fixed 7, H (° T ) is absolutely
continuous with respect to Lebesgue’ s measure Ay in
RY then its Radon-Nikodym derivative is called the
local time of X on T, denoted by L (x, T). Tt

follows from the definition that

N-parameter Gaussian process, local time moduli of continuity, large increments.

Lx,S)<L(x,T)forS =T <RY,
H(Aa T):JAL(Xa T)dx (3)

and

H(As [09't+ h] )_H(A9[09 t] )
- JA(L(Xa[Oy t+h] )_L(x,[O, t] ))d.xa

tLt+h € Ri].

Definition 2. A real-valued N-parameter
stochastic process X ={ X (1); ¢t € Ri} is called
Gaussian process with stationary increments if for

tGR]L X (1) is a Gaussian random variable, and
for any [ ¢, t+ A R
d
X(t,t+ h)=XCh).

The local times of single parameter Gaussian
process with stationary increments have been studied

by Csi)’rg(; et al.'". In this paper, we study local

times of N-parameter Gaussian process with
stationary  increments  under  the  following
assumption:

N

CovX (0, X =[] Ty htaicly b

Jj=1
—o(lg—1 D). @
w here Gi O, j=1 2,

concave on (0, ©). Some common and important N-

-5 are non-decreasing and

parameter Gaussian processes satisfy (4), such as N-
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parameter Brow nian motion, the Kiefer process and

N-parameter fractional Brownian motion. Condition
(4) implies that
N
(1) = EX ()= |] a3(o). 5
J=1

In the case of a single parameter standard Wiener

process there has been a great amount of elegant
work on its local time. Hawkes? showed the moduli
of continuity of L (x,[0, ¢]) on ¢
LO.[0.t+h)D—LQO.[0.4])__
{ hlog 1}1/2 d. 8.
(6)

m
h—>0 0<<r<1—h

while Perking A obtained

L(x,[0,t+h])—L(x,[0,¢])

hmsu su
B, sup sup

Csiki et al.'¥ proved that one can replace limsup b
p place limsup by
’];lir(l) in (7) and they obtained also the following

{2h loghi1

L(x,[0, s+ a()] )—L(x,fO, S] )

|V =1 a.s. D)

results: let 0 a (£)< ¢ be a non-decreasing function
of £=0, and assume that a (#)/ ¢ is non-increasing,
then

limsup _su

for each x €R, and

L(x,[07s+ a(t)] )7L(X9[Oas-|)

o a0 Qogt/ ale)+ 2loglogt)y "

1 a.s. (8)

limsup . sup, ,  sup

Moreover, if we also assume that ,lgnm[l()ga(t) \
loglogz= ©< then limsup can be replaced by lim in

Egs. (8) and (9). Taking a(#)=¢ in both (8) and
(9), we obtain the law of the iterated logarithm,

proved by Kesten ' for local time L (°, *) of a
Wiener process:
limsup L (x. [0, )
e (2[10glogt)
= limsup sup. L_(x,_[_O;t]%: 1 a.s.
oot —e 3 (2t loglogt)
1o

For local time L (x, T) of a single parameter
Gaussian process X={ X (1); =0}, Csﬁrgé etal.l!
showed some results, which are analogous to the

above (6), (7) and ().

The main objective of this paper is to study the
existence and joint continuity of the local times of an
results we

obtained are analogous to those of Csorgo et al.!"l.

N-parameter Gaussian process. The

First we point out existence and joint continuity
of the local times of an N-parameter Gaussian
process. 6 and Gemen” showed the
existence of the joint continuity of local times of a

Berman

Gaussian process in the one-parameter case, and by a
similar procedure we have the following theorem.

Theorem 1. Let X={X (¢); tGRZX} be an N-

parameter Gaussian process with mean zero and
stationary increments. If

=1 a.s. 9)

{a(t)(logt/a(t)+210g10gt)}

g J’N dsi ---dsw N
JO . G—l(sl)-"Gj(SN)< N for any ¢ € RY,

then the local time of X exists and if 63 Chi) is
continuous and concave for 0<< h;<<1, j=1, --» N,
then L(x, T) is jointly continuous almost surely .

N
Theorem 2. Let X={X (¢); t € R, } be a
Gaussian process with mean zro and stationary
increments. Assume that condition (4) is satisfied.

(i) Assume that X (0)=0 and 63 (1) is non-

decreasing and concave on (0, ho;) satisfying
6 Cahj) = cha's (), 0 hy << hg; (11)
forsomeO<a< 1, 0<a,<1/2, o j=1,2, 4 N

Hc{), a= Zaj Then

E(L(x, s t+ )™

Put ¢ =

1 m/ 2 mN x2
< 2 2 e 22t n)
Nm a
°16m—,,(1’"')—k<[0, no™ (12)
COG (h)

for each integer m =1, 0 <h =ho= Cho» -
€R" and xER.

‘e hON )

If, additionally, X is stationary with EX*(0)=
1 instead of X(0)=0 and G? (ho;)<<2, then

1 m/2 N .X'2
< o 2" exp| — VT
. 16M (m D"

< A0, h])"
T 0, 1) (13)
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for each integer m =2, 0 <h =ho, x €R.

(ii) Assume that X (0)= 0 and 65 (1) is non-
decreasing and concave on (0, 1), satisfying
o Cahp) = coa’'s (h), 0<h <1 14
for some << a1, O0< o;<1/2, &> 0, j=1, -
N. Then

w172V ) (G DY
a3 ()

< 32X 12

N
“aqo. A"l a+e @ as
o
for each even integer m=4, 0<n =1, 0<¢ =<1.

If, additionally, X is stationary with EX*(0)=
1 instead of X (0)=0, then
E sgp(L(x, [t TR D"

Nm —1/3 Nta

A3 ()

m—a/3

= A([0, 4] ) 16

Next we give results on large increments and
moduli of continuity of the local times of an N-
parameter Gaussian process.

Theorem 3. Let a ()= (a' (1), - a" (1))
and b (1) = (b (£)s - B (1)) be non-negative

functions of ¢ € R" . For j=1 -+ N, put ajx:
sup d (). Let X={X(1); IERJYF} be a Gaussian

tGRIX
process with X (0) =0, mean zero and stationary
increments. Assume that condition (4) is satisfied
with ¢ (1) satidying the conditions in (i) of
Theorem 2 with hg;= aj*, j=1 -+ N, and
1+ A (0, 6()])
Av ([0, a(t)])

as Ay ([0, t] ) — oo,

amn
Then
T L(x,[s,stalO])
n AR 02 30 (0. @ (D]B/ 6Ca (1)

N o
< &[2 a. s. ag)

co [«
for any x € R where

8 =1 A ([ 0,5 ()] )
R (0, a (D))

+ Nloglog| Av ([0, a (£)])

1
+RN([O,a(t)])] : 19)

Corollary 1. Tet X ={ X (¢); ¢ GRﬁ} be a
Gaussian process satisfying the conditions in Theorem
1 with Aoj= 1 instead of hoj = aj%, j=1, -5 N.
Then

limsy L©O.[0 A

WP A (0 ] ) Noglog (1/ W ([ G ] 1))/ 5(h)
L6020
<l .s.

S LO[s stk
B 0 05 0 (05 h] D (Wlog (17 Ay ( 0s ] D)/ ()
16" 2|

< a.s.
<S¢ | o

Corollary 2. Let Z={Z (t); tE R} be an N-
parameter fractional Wiener process of order = (ay,
e ay)y 0<< ;<< 1/2, i.e. a centered Gaussian

process with stationary increments and EX ([ 0, 4] )

N 2a.
= ,]:I hj 7. Then
LO.[0 A])
[0, 4] D' “(Nloglog (1/ A ([ 0, B]))"

)

16| 2

Theorem 4. Let b(h)=(b' (h), -+ B (7)) be
a function of heRji and X={X (¢); ZER{\L} be a
stationary N -parameter Gaussian process with mean
zero, stationary increments and EX>(0)=1. Assume
that condition (4) is satisfied with 63(1), j=1, -
N satisfying the conditions in (ii) of Theorem 2.
Then

limsu w L(x.[s. 85+ h])
A, G0 ) )Bo 0=s YO Ay ([ 0, h] ) YZ/ a(h)

N a
16 | 2
< @ [z a.s. 20)

for any x €R, where
Av (0, A1)+ A0, b(R)])
Av( 0, A])

. 32 1
c(h)log NV E

T = log[ 1+

QD

Corollary 3. Under the assumptions of Theorem
4, we have
limsup p L(x,[s,s+h])
Ay L0700 o s < Gy, 0 0’ Ay ([0, k] DB/ o (h)
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N a
< &[% a. s.
Co a
and
limsu L(x.[0. h)
w0 Ay ([0, 7] )0 (B Tog® (1/ Ay ([ 0 4] )
=0 a.s.
for each x ©R, 0L 0<1, where
Br =log (14 Ay (0, i} D!

“ o(h)log” > (1/ AW (0, 5] ).

L(x,[s s+ h])

Cordlary 4. Let X={X (¢); t€ R} be a

stationary Gaussian process with mean zero, stationary

increments and EX~(0)=1. Assume that Gi( 1) is non-

decreasing, ntinuous and concave on (0, 1), satisfying
é hjj<0j (hj)<cjoh;j for some 0< o<1/2, 0 &d<do
and all 0< /=<1, j=1,2, -5 N. Then

i
(

for each x €R and 0= 0<1.

Theorem 5. Let X={X (£); € R’ } be an N-

parameter Gaussian process with mean zero,

L(xs[s s+ hl)

B3P0 0 02, qon? w0, A1 2 10 (17 A ([ 0, £] D)

=0 a.s.

stationary increments and X (0)=0. Assume that 612
(D, j=1,
4. Then

-+, N, satisfy the conditions in Theorem

N o N
SR R

JMSP, R, SUP A ([05 h] ) Uog (1/ Ay (0, 1O Y/ 6(h) <o

Theorem 6. Let X={X (1); t€ R} be an N-
parameter stationary Gaussian process with mean
z7ero, stationary increments and EX*(0)=1. Assume
that Gi (D), j=1, =4 N, satisfy the conditions in
Theorem 4. Then (22) holds.

2 Proofs of theorems

In order to prove Theorem 2, we need some
lemmas. The following lemmais a version of Lemma
3.5 in Ref. [1] for the N-parameter case.

Lemmal. Let X={X (1); t €RY} be a
Gaussian process with mean zero and stationary
increments. Let m=1 be an integer and R (s, -+,

sm) be the covariance matrix of X (s1)y -+, X Csm).
Then for any x € R, t. h GRi

EL(x,[t,t+h D"
1 m/ZJ' J x2
| 2 (ttbh (e e & EX*(s1)
L RCs1s = 50) 7V 2ds) dsps 23)

where | R| denotes the determinant of R.

Lemma2. Let X={X (¢); t€RY} be an N-

parameter  Gaussian  process with stationary

increments and covariance function (4) and let X =

{/Yj(t)y [€R+}7 j =1 -4 N,

parameter

be a single

Gaussian process with mean zero,

stationary_increments and VarX’ (1)= GJ% (0, j=1,

22)

-» N, for I€ R+. Then for any integer n—=2 and

Sk— (Sk]a Tty SkN), k: 17 ctte Ny WE haVe

N
|R(Sla Tty Sn) ‘2 H ‘ R_/'(Sljs ) Sn]) ‘9
=1
24)

where R (s15, -5 s, ) and R; (syj5 -+ 84 ) are
covariance matrices of (X (s1), -+ X (sn)) and (X’

(51))s = X (5,)) respectively.

Proof. Recall that the Hadamard product of two
nX n matrices A= (a;) and B=(b;) isan nX n
matrix defined as A °B= (a;b;j). A classical theorem
of Oppenheim (cf. Hom et al.' ¥ ) asserts that if 4
and B are positive semidefinite Hermitian matrices
then
4B =14 l-IB L (25)
By condition (4) we see that the covariance matrix
R (sy5 -5 80) s of the
covariance matrices R; (sij, -y N.
Hence (24) is true.

the Hadamard product

sy =1

Proof of Theorem 2. Recalling (5) and using
Lemmas 1 and 2 and Lemma 3.3 in [ 1] we have

1 m/2 7x2
<| 5 J j expl H w2/ oy
2r [ & tth [ & tHh) 2EX (Sl)
1
| Rty ou sp) | 2dsy --dsn
1 m/?2 x2
< |+ X
i exp{ 262(t+h)_}
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% NJ J Lemma 3. Let § be a non-negative random
H t,t+h] [t,t+h] variable. Assume that
JoJ J m
1 ES" < C(m D* 27)
IR Cs1j) vosmy | 2dsyy - +dsuy for some C>0, o0 and each m=2. Then
K.C
3 < >
1" ymN o x PE=yr s (exp(yl/a/4)— D> 28
21 P2+ h) for any y > 0, where K. is a positive constant
« ﬁ depending only on a.
=1 V[ t, tTh] [t,t+h] .
LA I The proof can be found in [1] .
o 1 Lemma 4. Under the assumptions of Theorem
G; (Slj)6'<s2j7 Szj)"'Gj(Smj*Smej)
st o 3, have s
S1j - dsmy / M
< L 2"V exp 2x— @
2n 20°(t+h) <1<aexp{—x/2o (H—h)} 29)
H m JJ T expGV =D
=1 c oChp™ o forany 0<h =<a ", >0, x ER.
1SS
. 1 A1yl The proof follows immediately from (12) and
L= 1D U= D" " Lemma 3.
1 m/2 v X2
- " —_— Proof of Th 3.
<{Zr] 2" exp 262(t—|—h)] roof of Theorem
. ML(’" !)a’ Let << K% For j=1, -, N, define
J=1 (Clo)mﬁj(h;)m . . P
AR B A= 0<dwo< 0,
<| = m — —— i
=l2g 227Gt — oo < o,
A6 m D (0, 5y 5, 0 A =6 0<Hd o< 07 e ).,
coo (h) o L= 0.1, - J
lj h 1y .

here the fourth inequality follows in the same way as

It i t that
in the proof of (3.10) in[1]. (12) is proved. 15 ey B(t);eeﬁk [a:: log g + Nloglog b |

N N
The proof of (13) is similar to that of (12) by forany ¢ € ﬁ A],; , with k = Ekj’ | = Elj?

using Lemma 3.4 instead of Lemma 3.3 in [ 1] . = =1 J=1
where 0>>1 is a constant. Put K= Cky, -+ ky)
For an N-parameter Gaussian process X (¢), we L=Cly - Iy) and ax= (9k1+1 ek i ), bk. 1L
have similar results in Lemmas 4.1 and 4.2 in [ 1] . gitkte Lk t2 +1 gt
. . . = (0T e 0T, =i
Using Lemma 2 again and along the lines of the gt
proofs of Lemmas 4.3 and 4.4 in [ 1] and (12), we ) and define ab= Ca1b1, -+ anbn ), for a=
can prove (15) and (16). (al, - ay)s b= (b1, -5 by). Noting that L (x,
7T)is non*decreasing in T foreach fixed x, we have

limsu L(x.[s. 8t a(])
LR 0S8 a0 a (B 6Ca ()

u o (gL (xe [ 8o st ale)] )
AE 08 A ([0, a (O] B

A

<limsup sy

l/;/l » N

- 6(ag)L(x,[ s s+ ak])
<lmsw . sup o g sup 05"
s 4 K. L k1

6Cag) L(x,[ Max, (M+ Dag])
max kN ’
SN a0l GBk.l

< lpmsup ., sup (30)
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N
where r = 5:1’,',

=
vy j=1, -4 N, and M+ 1= (m;+ 1,
Applying Lemma 4, we have

P .. i kps o ks

M= (ml’ ) mN)y mJ:(), 17

e myt1).

oCag) L (x,[ Mag, (M+ 1 ag])

= sup max -
P rpd =l N oy G

N

g [2?6 16"

h=ry Iy=r
<G 2 Zeﬂukl)bgf@ve k|
h=rn vy

<GO "V +D ™
3D
=1, 2, 3, are constants depending only
on 0 and a. Note that
PIPDIPIN Z Py
P00k = —o N
It follows by the Borel-Cantelh lemma that

limsu u L(x.[s.s+a(H)])
A, 01 )B;x;»ogsﬁp(z) )\N([ 0, a(t)] )B‘;/ c(a(t))

a N
g@N[z—e] 16 a.s.

a Co

where Cj, j

OO,
e < oo

By arbitrariness of 0, we obtain (18). The proof of
Theorem 3 is completed.

Similar to Lemma 4, a combination of Lemma 3
with (13) implies the following lemma.

Lemma 5. If (13) holds true, then
172 2~N
1) 232" (0. i
P{L<x,[t,t+h]>>[2ﬂ 32 W0 A

forea(?h 0<h 5hOa teR:j»v y>07 xeR.

Using Lemma 5 instead of Lemma 4, proceeding
along the lines of the proof of Theorem 3, we obtain
Theorem 4.

The proofs of Theorem 5 and Theorem 6 are
based on the following two lemmas, which are similar
to that of Lemma 4 by using (15) (resp. (16))
instead of (12).

Lemma 6. Under the assumptions of Theorem

5, we have N
172" (0 hD)
P{;gp(l,(x,[l‘y t+h D)= 12 cONG(h) Y

<K oCr (A ([0 7] )Y+ exp (— VN 2/2)
(33)
foreach y> 1, 0 =¢, h =1, where

Ci=320 ‘”(1)5“_ (1+ 6 ().

Jj=1
Lemma 7. Under the assumptions of Theorem

6, we have
86" Ay ([0, h])
p{;puu,[z, t+hl D> 12 %/v

1/(N+a)/2)
(34)

< KaCr (A ([0 2] ) “Plexp y

foreach y> 1, 0=¢, h <813, wh3€re
1
Ca=64co 6 " (h).

Proof of Theorem 5. For integers kj, j=1, -
N

Ny let K= (k1 o ks k= D kyy 07K= (07",
=1

1

coo(h) ey eik’v); for integers m;=0, j=1, --=» N, let M
< Kaexp(_ x2/2N—F])G(h) (32) 1:<(g1<195'/';; mTNh)9 M+ 1: (m1+17 ] mN+1) and
(exp(y Ve 4y —1) - Lhen
limsu sy L(x,[s s+ h])
a0 P 0B 5P 2 (0, 1)) Qog (17 A ([ 0, 11D N/ 6 (h)
< limsu . L(x.[s. s+ h])
T I SRR A (0 ) Qog (17 Ay (0 A1) 0 ()
. LG, [ ME, M+ 16
< — .
= Hmsp S SR GV (g (67 )7 N/ 6 () 35)
From (33), we have (0* gt
Lo MO M+ 1)0) < 20 2 KaCi 04

su Sup pi—N
0=<m=0 K p 0

Uog (0 )Y/ (0%
= p 172 [2 0+ ﬁa] GW%
@ 3

° exp[— [QTL %OJ 10g9k2]

< Kek(()*l)



114 www. tandf. co. uk/journals Progress in Natural Science Vol. 15 No.2 2005

By the Borel-Cantelli lemma, we obtain
Eman sup  sup LGl MO (M 10 "))
PP S SR EN (g (07 ) TV 6 (66)

N
< 12% 26+%a AR 36)

By (35) and (36) and taking 0 near to 1, (22) is

proved.

The proof of Theorem 6 is similar to that of
Theorem 5 and therefore is omitted.

References

1 Cw l'g(/), M., Lin Z. Y. and Shao Q. M. On moduli of continuity
for local times of Gaussian processes. Stochastic Processes Appl.,

1995, 58. 1—21.

Hawkes J. A lipschitz condition for the stabk subordinator. Z.
wahrsch. verw Gebiete., 1971, 17. 23—32.

Perking E. The exact Hausdorff measure of the level sets of
Brownian motion. Z. W ahrsch. verw Gebiete., 1981, 58; 373—
388.

Csiki E., Csorg 0 M. and FOldes A. How big are the increments
of the local time of a Wiener process? Ann. Probab., 1983, 11.
593—601.

Kesten H. An iterated logarithm law for bcal time. Duke Math.
J.. 1965, 32:. 447—456.

Berman S. M. Local times and sample function properties of
stationary processes. Trans. Amer. Math. Soc., 1969, 137:
277—299.

Geman D. A note on the continuity of local times. Proc. Amer.
Math. Soc., 1976, 57. 321—326.

Horn R. A. and Johnsoon C. R. Matrix Analysis. Cambridge
University Press, 1999.



